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Lattice Boltzmann model with nearly constant density
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An improved lattice Boltzmann model is developed to simulate fluid flow with nearly constant fluid density.
The ingredient is to incorporate an extra relaxation for fluid density, which is realized by introducing a
feedback equation in the equilibrium distribution functions. The pressure is dominated by the moving particles
at a node, while the fluid density is kept nearly constant and explicit mass conservation is retained as well.
Numerical simulation based on the present model for(gteady plane Poiseuille flow and th@insteady
two-dimensional Womersley flow shows a great improvement in simulation results over the previous models.
In particular, the density fluctuation has been reduced effectively while achieving a relatively large pressure
gradient.
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The simulation of the incompressible fluid flow is an im- of density will result in enormous changes of the pressure
portant area of practical interest. The most important issue oand the direct incorporation of the equation of state with LB
such simulation is the robustness and accuracy of the numodel will likely ruin the numerical stability11].
merical scheme. In the past decade, the lattice Boltzmann In this paper, a simple but effective LB model is presented
(LB) method[1,2] and its recent modification, the lattice- to simulate incompressible fluid flow by incorporating an
BGK (LBGK) method [3,4] have become a promising €Xxtra density relaxation, which is realized by introducing a
scheme towards this direction. Although the LBGK methodfeedback equationl2] for the ratio between the rest and
was initially proposed to simulate the incompressible Naviermoving parts of EDF's. When the total density at a node is
Stokes equations, the latter can be derived from the LBGHgreaterismallej than the prespecified valyg, a very small
equation, through the Chapman-Enskog procedure, only igmount of the restmoving particles are changed into the
the density fluctuation isssumechegligible. Unfortunately, ~moving(res} particles in the EDF’s, so that in the following
this assumption is usually violated for most practical casesstreaming step, morgess particles will leave the node. The
In fact, the equation of stage=c2p, with constant?, from  density at the node will decreagiacreasg to approactpy.
the conventional LBGK models implies that any pressurelhis extra relaxation keeps the density at any fluid node
gradient should lead to density variation. There have beefVOlve into a(nearly prespecified constant, achieving the
efforts to eliminate or reduce the so-called compressible efincompressibility of the system, while the presspra this

fect[5—9] by redefining the velocity. However, explicit mass Model is dominated by the total moving particles at a node.
conservation has fallen into neglect in these models. To demonstrate the accuracy of the present model, numerical

Consider, e.g., the LBGK simulation for the flow in an simulations based on the present model have been performed
equiwidth tube. Macroscopically, the flow is driven by pres-for the(steady plane Poiseuille flow and theinsteady two- -
sure gradient. By the viewpoint of LB, the flow is due to the dimension(2D) Womersley flow. The results show a consid-
difference of the moving distribution functioi®F's), rather ~ €rable improvement over the conventional LBGK model,
than the rest ones, between two ends of the tube. More sp@nd the typical incompressible model as proposed by He and
cifically, the fluid flows usually from the end with greater Lou [9] at higher frequencies. In particular, the density fluc-
moving DF’s to the end with smaller moving DF’s. As the tuation has been reduced effectively while relatively large
ratio between the rest and moving parts of DF’s is mainlyPressure gradient is established. o . _
determined through the equilibrium distribution func- Ve choose to work on a square lattice in two dimensions,
tions EDF's) assumed3,4], it follows that the greater the generalization to higher dimensions and other underlying lat-
moving DF's, the greater the rest ones, and thus the largdice or nonuniform grid is straightforward. Léf(x,t) be a
the total DF’s, or, the fluid density, if the velocity of the node Nonnegative real number describing the DF of the fluid den-
is fixed. In this sense, the flow is driven by the density gra-=Sity at sitex at time t moving in directione . Here &
dient in the LB model. Large density gradient is required in=(0,0), & =(cosm(i—1)/2, sinm(i—1)/2),i=1,2,3,4, ands
order to simulate large pressure gradient. On the other handf; (cosm(2i—1)/4),sinm(2i—1)/4), for i=5,6,7,8 are the
to achieve incompressibility, it is necessary to keep the derine possible velocity vectors. The DF’s evolve according to
sity, namely, the total DF’s(at least nearly constant. One & Boltzmann equation that is discrete in both space and time
natural approach to attack this difficulty is to directly incor- [3,4]
porate the equation of state for the real fluid with the LB
model, based on the free energy approach presented by Yeo-
mans and co-workersee, e.g.[10]), by which a small den-
sity gradient may result in large pressure gradient. However,
for nearly incompressible fluid, as the coefficient of com-where 7 is the dimensionless collision relaxation time. The
pressibility is exceedingly small, namely, quite small changedensityp and macroscopic velocity are defined by

fi(X+e|-t+1)—fi(X,t)=—%(fi—ffq), 1
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The EDF'sf;%are usually supposed to be dependent only
on the local density and flow velocityu. In this paper the b
EDF's are chosen as

2
f5%=Aap— 3 pU%

feI=A p+£p 3(§~~J)+g(é--ﬁ)2—§u2 i=1,2,3,4

i 1 9 i 2 i 2 ] 3Ly 9y Ty
gt L e e 60— o], i=567.8 ’

i 2 Pt 3gP (&-u)+ E(ei'u) —out 1=9.0.4.8, FIG. 1. The critical valuéb, determined numerically.

()

. ary. The contribution of feedback #, is small(usually less

with than 0.1% and there is no problem of numerical instability
Ag+5A,=1 4) provided that an appropriate bfis chosen..

By using Chapman-Enskog procedure, from Eds.and
to guarantee the mass conservaiifh, f9=38_  f,. un-  (3), the macroscopic equations can be worked out as follow-
like that in the conventional LBGK modg8], the ratio ofA, N9,
andA; are not fixed but pgrturbgd to con.trol the density at dyp+3,(pu,)=0,
the considered nodes. Initiallyy; is determined by

8 8
> =2 1. (5)
=1 i=1

A(pUL)+ I5(pU,Up)

1 1
=—d,p+ T_E dy §—3A1 ﬁy(puy)

Denoting byA? the solution ofA; from Eq. (5), before each

collision step, we change the valuef slightly from A9 to +ag T— E) [Ep(ﬂauﬁ+ dgU,)
some other valugl2], 2]|3
A=A%+s(p,7), (6) 1
t + §—3A1 (Ugdgp+Ugd,p)—3d,(pugUgu,) |,
wheresis a function ofp and7. The simplest feedback is the
linear response function, given by 8
p where the pressurp=3A;p. If p=py=constant we obtain
s(p,7)=—b(7)| 1- % ' () the following equations for the incompressible fluid flow,

. : : dU,=0,
Hereb is a constant for givem, andpg is the expected, or are

prespecified, value of density for all the nodes in the fluid 1

domain. Equationg6) and (7) represent an effort to turn dUgtdg(UUg)=——3d,p+vdgdgu,, 9

some resi{moving particles into the movingres) ones in Po

the EDF's whenp>po (p<po). Therefore, in the next here the viscosityy=27—1/6. In the following we will

streaming step, moriess particles will leave the node with  fing that the density variatiodp=p— p, is small as com-

p>po (p<po), resulting in a decreas@n increaseof p  pared with the pressure variation.

towardspy. To demonstrate the accuracy of the present scheme, the
The technique of feedback can also be understood as glane Poiseuille flow and the 2D Womersley flow are simu-

extra relaxation that relaxes the system towards a state witlated with the pressure and wall boundary condition pro-

prespecified constant density at any fluid node, while stillyosed by Zou and HEL3]. We find that the velocities for

keeps the conventional stress relaxation by Epto achieve 0 75< <60 agree with the analytical solution to a very high

arbitrary viscosity. The parameterin Eq. (7) characterizes  accuracy. Consider, e.g., a system with shigx N,=21

the density relaxation speed. Larger valuebdfelps to re-  x 21 The maximal values of the relative error arrt) are

duce the fluctuation of density. However, the scheme wills gx 1073, 1.0x 1074, 1.0x 10~ for the maximal velocities

lose stability for the parametdr above a critical valud.. .1, 0.01, and 0.001, respectively. Here ®rr() is defined

Figure 1 shows the result fdr, determined numerically for 5t any nodex; and timet in the fluid domain as follows:

the unsteady Womersley flow for the peridd=2000. In

practical simulation, the value dfis usually chosen to be a err(x t)= |u(x; ,t) — Ug(X; 1)

little smaller thanb, in case of instability caused by bound- v [ug(x;,1)]

, (10
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whereuy is the analytical solution. The density deviatiép
is found to decrease exponentially with tirhafter the first
few steps. Forr=0.75 andb=0.001, e.g.,6pxexp(—et)

107 0
with e~0.0022 after first 100 steps for any node. We briefly 1 0= :0=0=0— e ’g.
compare our simulation results with those from conventional 10° 4 Lok S
LBGK simulation. In the conventional LBGK modeh . o
(9] -4 _ D/

10-1-—I—I'I'I'I'I'I'I'| T

=p/3 so that the velocity at the centerlig increases lin-
early along the tube. The density is fixed to pg in the

present scheme so that the compressibility error is effectively 1x10° 4 o—o—0—°

reduced. Take the case for 6.5 anduy~0.01 for example, -

u. changes about 5% from the inlet to the outlet in the con- 10° (@) L o o | < ]
venti(_)nal LBM Whil_euc varies less than 0.01% through the +—— i —— ----‘ﬂlh —
tube in our simulation. 10* 10° 10 10"

The geometric configuration of the 2D Womersley flow
(pulsatile flow in the 2D channg|14] is identical to that of Vv
the plane Poiseuille flow, except that the flow is driven by a
periodic pressure gradient at the entrance to the channel. Th
incompressible Navier-Stokes equation for the laminar flow

IS:
u P d%u
> = +v—p

Er A (11

where the pressure gradient driving the flow is given by

P _
——=RgAe*"]

ax (12)

with an amplitudeA and frequencyw. The solution of the
above equation is

A(l— cog A (2y/Ly—1)]

ux(y,t):Re[ Y )eiwt}, (13

i —
(O]

where\ is given in terms of the Womersley number as
follows:

(14

100

1000
T

FIG. 2. Relative global error of velocity field? in 2D Womer-
sley flow for the LBGK modelcircles, the He-Lou model(stars,
and the present modésquares with 7=0.75 (filled symbols and
7=6.5 (open symbols (@) Log-log plot of L? vs Vp,y for T

In the simulation, the system size and the boundary con=2000, whereV,,,, is the maximal velocity in fluid domainb)
ditions are the same as those used in the previous simulatidmg-log plot of L2 vs T for A=0.0001, wheré is the amplitude of
for the Poiseuille flow. The period of the driving pressure isthe driving pressure gradient.

T (w=27/T) and the magnitude of the total pressure drop
along the channel iAP (A=AP/L,). The initial state of the

velocity field is set to be zero everywhere in the system. Th‘:t'hose of the LBGK model greatly. In particuldr? is con-

that the present scheme improves the simulation results over

calculation of the velocity field always began withTLiitial
steps to attain sufficient convergence.

In Fig. 2(a), the relative global errok? is plotted vs the
maximal velocity in the systenY,,, for r=0.75 andr
=6.5. HereL? is defined by

IIZ u(x;,t) — Up(x; ,b)[|?
L?=]|ou||?=

(15
IS uotx 01

The summation is over the entire systarg;is the analytical
solution given by Eq(13). In the simulation,b=0.08 and

siderably reduced in the present model in comparison with
He-Lou model for the case with=6.5 andV,,,<0.1.

We next consider the accuracy for the unsteady flow with
various periods. Typical results are shown in Figo)Zor 7
=0.75 and7=6.5. It is interesting to find the approximate
power-law scalind.>~ T~ ¢. The exponent is dependent on
7, with {~3.5 for 7=0.75 and/~2.2 for 7=6.5, for all
three models. More important, it is noted that the present
model gives the smallest global errors. We emphasize that
the present scheme gives the best results at higher frequen-
cies which is very important for the practical application of
the lattice Boltzmann methods.

In the unsteady flow, the density at any node in the fluid

0.20 for r=0.75 andr=6.5, respectively. It is clearly seen domain does fluctuate around the expected dengjtgven
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g 1.0 simulation. This lack of explicit mass conservation may lead
8 0.6 to serious problems especially for closed systems. Let us
~.°5 ) consider for example, the fluid that fills a balloon. If the
@ 0.4 pressure outside the balloon increases during the simulation,
5 0.2- then, d,,, which represents the pressure in fluid domain,
& should increase to balance the outside pressure. The total
% 00 distribution functions in the balloon increase accordingly

since the mass conservation demands hastays constant.
t As a result, one has to put an extra global constraint on the
FIG. 3. The density differencAp between the inlet and outlet bo!md"?‘ry condition to_ add_ some more DF'_S to the system.
as a function of time in a period for the case witfi=2000 and Ih's P'ﬁ'QUIFy also arises in the “sys'f’em_wrth a bubble of
A=0.0001/3, based on the conventional LBGK model and the Plue” fluid inside an immiscible “red” fluid. The case is,

present model withr=0.75 (dashed linpand 7=6.5 (dotted ling. ~ however, much simpler if simulated using the present model.
The mass conservation is naturally guaranteed, and the sys-

, ) o tem will evolve into a state with greatéy;, while keeping
in the present model. The density deviation is, however, very,, density almost unchanged.
small compared to the model by Qi8] for the same driven To summarize, we have developed an LB model for in-
pressure gradient. Figure 3 shows the density differéee o mpressible fluid flow by introducing an extra relaxation
bet\_/veen the inlet and_ outlet as a function of timé a o fluid density, or explicitly, by making onlwery small
period, for the case witll =2000 andA=0.0001/3, based (me.dependent perturbation to the ratio of the rest and mov-
on the conventional LBGK model and the present modelnq parts of the EDF’s. In our model, the density deviation
with 7=0.75 andr=6.5. Itis seen that the density deviation s, has peen reduced effectively. Most of the compressible
in the present model is only a small fraction of that in theeffect in the previous LB models has been eliminated. More-
conventional LBGK model, suggesting that our scheme progyer, we find that the numerical results can be further im-
vides a good approach to incompressible fluid flow. proved if a more complex feedback function is chofe.
Finally, it is noted_ that. as thg DF'’s in the present modelrhe present model will be applied to study the pulsatile flow
denote the fluid particle distributions, the conservation of thg, the plood vessdll5]. We believe that the method can be
total DF’s in the entire systend, naturally results in an  eytended taarget the density, which may be related to the
explicit mass conservation for closed system. In the Previougsmperature, pressure, etc., in other LB modéls 18.
incompressible models that are based on the redefinition of
the velocity (see, e.g[9]), the total DF's at a noded,, This work was supported by NSFC through Project Nos.
represents the pressure, rather than the density, the mass cd8704003, 19834070, and 19904004. H.P.F. sincerely thanks
servation for the system is established, only implicitly, byDr. Y. H. Qian, Dr. S.Y. Chen, Dr. L.S. Luo, and Dr.
keeping the number of fluid nodell,,, unchanged during d’Humieres for their helpful discussions.
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