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Lattice Boltzmann model with nearly constant density
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An improved lattice Boltzmann model is developed to simulate fluid flow with nearly constant fluid density.
The ingredient is to incorporate an extra relaxation for fluid density, which is realized by introducing a
feedback equation in the equilibrium distribution functions. The pressure is dominated by the moving particles
at a node, while the fluid density is kept nearly constant and explicit mass conservation is retained as well.
Numerical simulation based on the present model for the~steady! plane Poiseuille flow and the~unsteady!
two-dimensional Womersley flow shows a great improvement in simulation results over the previous models.
In particular, the density fluctuation has been reduced effectively while achieving a relatively large pressure
gradient.
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The simulation of the incompressible fluid flow is an im
portant area of practical interest. The most important issue
such simulation is the robustness and accuracy of the
merical scheme. In the past decade, the lattice Boltzm
~LB! method @1,2# and its recent modification, the lattice
BGK ~LBGK! method @3,4# have become a promisin
scheme towards this direction. Although the LBGK meth
was initially proposed to simulate the incompressible Nav
Stokes equations, the latter can be derived from the LB
equation, through the Chapman-Enskog procedure, on
the density fluctuation isassumednegligible. Unfortunately,
this assumption is usually violated for most practical cas
In fact, the equation of statep5cs

2r, with constantcs
2 , from

the conventional LBGK models implies that any press
gradient should lead to density variation. There have b
efforts to eliminate or reduce the so-called compressible
fect @5–9# by redefining the velocity. However, explicit mas
conservation has fallen into neglect in these models.

Consider, e.g., the LBGK simulation for the flow in a
equiwidth tube. Macroscopically, the flow is driven by pre
sure gradient. By the viewpoint of LB, the flow is due to t
difference of the moving distribution functions~DF’s!, rather
than the rest ones, between two ends of the tube. More
cifically, the fluid flows usually from the end with greate
moving DF’s to the end with smaller moving DF’s. As th
ratio between the rest and moving parts of DF’s is mai
determined through the equilibrium distribution fun
tions~EDF’s! assumed@3,4#, it follows that the greater the
moving DF’s, the greater the rest ones, and thus the la
the total DF’s, or, the fluid density, if the velocity of the nod
is fixed. In this sense, the flow is driven by the density g
dient in the LB model. Large density gradient is required
order to simulate large pressure gradient. On the other h
to achieve incompressibility, it is necessary to keep the d
sity, namely, the total DF’s,~at least nearly! constant. One
natural approach to attack this difficulty is to directly inco
porate the equation of state for the real fluid with the L
model, based on the free energy approach presented by
mans and co-workers~see, e.g.,@10#!, by which a small den-
sity gradient may result in large pressure gradient. Howe
for nearly incompressible fluid, as the coefficient of co
pressibility is exceedingly small, namely, quite small chan
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of density will result in enormous changes of the press
and the direct incorporation of the equation of state with
model will likely ruin the numerical stability@11#.

In this paper, a simple but effective LB model is presen
to simulate incompressible fluid flow by incorporating a
extra density relaxation, which is realized by introducing
feedback equation@12# for the ratio between the rest an
moving parts of EDF’s. When the total density at a node
greater~smaller! than the prespecified valuer0, a very small
amount of the rest~moving! particles are changed into th
moving ~rest! particles in the EDF’s, so that in the followin
streaming step, more~less! particles will leave the node. The
density at the node will decrease~increase! to approachr0.
This extra relaxation keeps the density at any fluid no
evolve into a~nearly! prespecified constant, achieving th
incompressibility of the system, while the pressurep in this
model is dominated by the total moving particles at a no
To demonstrate the accuracy of the present model, nume
simulations based on the present model have been perfor
for the~steady! plane Poiseuille flow and the~unsteady! two-
dimension~2D! Womersley flow. The results show a consi
erable improvement over the conventional LBGK mod
and the typical incompressible model as proposed by He
Lou @9# at higher frequencies. In particular, the density flu
tuation has been reduced effectively while relatively lar
pressure gradient is established.

We choose to work on a square lattice in two dimensio
generalization to higher dimensions and other underlying
tice or nonuniform grid is straightforward. Letf i(x,t) be a
nonnegative real number describing the DF of the fluid d
sity at site x at time t moving in direction ei . Here e0
5(0,0), ei5„cosp(i21)/2, sinp(i21)/2…,i 51,2,3,4, andei
5(cosp(2i21)/4),sinp(2i21)/4), for i 55,6,7,8 are the
nine possible velocity vectors. The DF’s evolve according
a Boltzmann equation that is discrete in both space and t
@3,4#

f i~x1ei ,t11!2 f i~x,t !52
1

t
~ f i2 f i

eq!, ~1!

wheret is the dimensionless collision relaxation time. Th
densityr and macroscopic velocityu are defined by
©2002 The American Physical Society14-1
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r5(
i 50

8

f i , ru5(
i 50

8

f iei . ~2!

The EDF’sf i
eq are usually supposed to be dependent o

on the local densityr and flow velocityu. In this paper the
EDF’s are chosen as

f 0
eq5A0r2

2

3
ru2.

f i
eq5A1r1

1

9
rF3~eW i•uW !1

9

2
~eW i•uW !22

3

2
u2G , i 51,2,3,4,

f i
eq5

A1

4
r1

1

36
rF3~eW i•uW !1

9

2
~eW i•uW !22

3

2
u2G , i 55,6,7,8,

~3!

with

A015A151, ~4!

to guarantee the mass conservation( i 50
8 f i

eq5( i 50
8 f i . Un-

like that in the conventional LBGK model@3#, the ratio ofA0
and A1 are not fixed but perturbed to control the density
the considered nodes. Initially,A1 is determined by

(
i 51

8

f i
eq5(

i 51

8

f i . ~5!

Denoting byA1
0 the solution ofA1 from Eq. ~5!, before each

collision step, we change the value ofA1 slightly from A1
0 to

some other value@12#,

A15A1
01s~r,t!, ~6!

wheres is a function ofr andt. The simplest feedback is th
linear response function, given by

s~r,t!52b~t!S 12
r

r0
D . ~7!

Hereb is a constant for givent, andr0 is the expected, or
prespecified, value of density for all the nodes in the flu
domain. Equations~6! and ~7! represent an effort to turn
some rest~moving! particles into the moving~rest! ones in
the EDF’s whenr.r0 (r,r0). Therefore, in the nex
streaming step, more~less! particles will leave the node with
r.r0 (r,r0), resulting in a decrease~an increase! of r
towardsr0.

The technique of feedback can also be understood a
extra relaxation that relaxes the system towards a state
prespecified constant density at any fluid node, while s
keeps the conventional stress relaxation by Eq.~1! to achieve
arbitrary viscosity. The parameterb in Eq. ~7! characterizes
the density relaxation speed. Larger value ofb helps to re-
duce the fluctuation of density. However, the scheme w
lose stability for the parameterb above a critical valuebc .
Figure 1 shows the result forbc determined numerically for
the unsteady Womersley flow for the periodT52000. In
practical simulation, the value ofb is usually chosen to be
little smaller thanbc in case of instability caused by bound
03631
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ary. The contribution of feedback toA1 is small~usually less
than 0.1%! and there is no problem of numerical instabili
provided that an appropriate ofb is chosen..

By using Chapman-Enskog procedure, from Eqs.~1! and
~3!, the macroscopic equations can be worked out as follo
ing,

] tr1]a~rua!50,

] t~rua!1]b~ruaub!

52]ap1S t2
1

2D ]aF S 1

3
23A1D ]g~rug!G

1]bS t2
1

2D F1

3
r~]aub1]bua!

1S 1

3
23A1D ~ua]br1ub]ar!2]g~ruaubug!G ,

~8!

where the pressurep53A1r. If r5r05constant we obtain
the following equations for the incompressible fluid flow,

]aua50,

] tua1]b~uaub!52
1

r0
]ap1n]b]bua , ~9!

where the viscosityn52t21/6. In the following we will
find that the density variationdr5r2r0 is small as com-
pared with the pressure variation.

To demonstrate the accuracy of the present scheme
plane Poiseuille flow and the 2D Womersley flow are sim
lated with the pressure and wall boundary condition p
posed by Zou and He@13#. We find that the velocities for
0.75<t<60 agree with the analytical solution to a very hig
accuracy. Consider, e.g., a system with sizeNx3Ny521
321. The maximal values of the relative error err(xi ,t) are
5.031023, 1.031024, 1.031025 for the maximal velocities
0.1, 0.01, and 0.001, respectively. Here err(xi ,t) is defined
at any nodexi and timet in the fluid domain as follows:

err~xi ,t !5
uu~xi ,t !2u0~xi ,t !u

uu0~xi ,t !u
, ~10!

FIG. 1. The critical valuebc determined numerically.
4-2
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whereu0 is the analytical solution. The density deviationdr
is found to decrease exponentially with timet after the first
few steps. Fort50.75 andb50.001, e.g.,dr}exp(2et)
with e'0.0022 after first 100 steps for any node. We brie
compare our simulation results with those from conventio
LBGK simulation. In the conventional LBGK model,p
5r/3 so that the velocity at the centerlineuc increases lin-
early along the tube. The density is fixed to ber0 in the
present scheme so that the compressibility error is effectiv
reduced. Take the case fort56.5 andu0'0.01 for example,
uc changes about 5% from the inlet to the outlet in the c
ventional LBM whileuc varies less than 0.01% through th
tube in our simulation.

The geometric configuration of the 2D Womersley flo
~pulsatile flow in the 2D channel! @14# is identical to that of
the plane Poiseuille flow, except that the flow is driven b
periodic pressure gradient at the entrance to the channel.
incompressible Navier-Stokes equation for the laminar fl
is:

]ux

]t
52

]P

]x
1n

]2ux

]y2 , ~11!

where the pressure gradient driving the flow is given by

]P

]x
5Re@Aeivt# ~12!

with an amplitudeA and frequencyv. The solution of the
above equation is

ux~y,t !5ReF i
A

v S 12
cos@l~2y/Ly21!#

cosl DeivtG , ~13!

wherel is given in terms of the Womersley numberk, as
follows:

l252 ik2, k25
Ly

2v

4n
. ~14!

In the simulation, the system size and the boundary c
ditions are the same as those used in the previous simula
for the Poiseuille flow. The period of the driving pressure
T (v52p/T) and the magnitude of the total pressure dr
along the channel isDP (A5DP/Lx). The initial state of the
velocity field is set to be zero everywhere in the system. T
calculation of the velocity field always began with 10T initial
steps to attain sufficient convergence.

In Fig. 2~a!, the relative global errorL2 is plotted vs the
maximal velocity in the systemVmax for t50.75 andt
56.5. HereL2 is defined by

L25uuduuu25

uu(
i

u~xi ,t !2u0~xi ,t !uu2

uu(
i

u0~xi ,t !uu2
. ~15!

The summation is over the entire system;u0 is the analytical
solution given by Eq.~13!. In the simulation,b50.08 and
0.20 for t50.75 andt56.5, respectively. It is clearly see
03631
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that the present scheme improves the simulation results
those of the LBGK model greatly. In particular,L2 is con-
siderably reduced in the present model in comparison w
He-Lou model for the case witht56.5 andVmax,0.1.

We next consider the accuracy for the unsteady flow w
various periods. Typical results are shown in Fig. 2~b! for t
50.75 andt56.5. It is interesting to find the approximat
power-law scalingL2;T2z. The exponentz is dependent on
t, with z'3.5 for t50.75 andz'2.2 for t56.5, for all
three models. More important, it is noted that the pres
model gives the smallest global errors. We emphasize
the present scheme gives the best results at higher freq
cies, which is very important for the practical application o
the lattice Boltzmann methods.

In the unsteady flow, the density at any node in the flu
domain does fluctuate around the expected densityr0 even

FIG. 2. Relative global error of velocity fieldL2 in 2D Womer-
sley flow for the LBGK model~circles!, the He-Lou model~stars!,
and the present model~squares! with t50.75 ~filled symbols! and
t56.5 ~open symbols!. ~a! Log-log plot of L2 vs Vmax for T
52000, whereVmax is the maximal velocity in fluid domain.~b!
Log-log plot ofL2 vs T for A50.0001, whereA is the amplitude of
the driving pressure gradient.
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in the present model. The density deviation is, however, v
small compared to the model by Qian@3# for the same driven
pressure gradient. Figure 3 shows the density differenceDr
between the inlet and outlet as a function of timet in a
period, for the case withT52000 andA50.0001/3, based
on the conventional LBGK model and the present mo
with t50.75 andt56.5. It is seen that the density deviatio
in the present model is only a small fraction of that in t
conventional LBGK model, suggesting that our scheme p
vides a good approach to incompressible fluid flow.

Finally, it is noted that as the DF’s in the present mod
denote the fluid particle distributions, the conservation of
total DF’s in the entire system,ds , naturally results in an
explicit mass conservation for closed system. In the previ
incompressible models that are based on the redefinitio
the velocity ~see, e.g.@9#!, the total DF’s at a node,dn ,
represents the pressure, rather than the density, the mass
servation for the system is established, only implicitly,
keeping the number of fluid nodes,Nn , unchanged during

FIG. 3. The density differenceDr between the inlet and outle
as a function of timet in a period for the case withT52000 and
A50.0001/3, based on the conventional LBGK model and
present model witht50.75 ~dashed line! andt56.5 ~dotted line!.
tt.
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simulation. This lack of explicit mass conservation may le
to serious problems especially for closed systems. Let
consider for example, the fluid that fills a balloon. If th
pressure outside the balloon increases during the simula
then, dn , which represents the pressure in fluid doma
should increase to balance the outside pressure. The
distribution functions in the balloon increase according
since the mass conservation demands thatNn stays constant.
As a result, one has to put an extra global constraint on
boundary condition to add some more DF’s to the syste
This difficulty also arises in the system with a bubble
‘‘blue’’ fluid inside an immiscible ‘‘red’’ fluid. The case is,
however, much simpler if simulated using the present mo
The mass conservation is naturally guaranteed, and the
tem will evolve into a state with greaterA1, while keeping
the density almost unchanged.

To summarize, we have developed an LB model for
compressible fluid flow by introducing an extra relaxati
for fluid density, or explicitly, by making onlyvery small
time-dependent perturbation to the ratio of the rest and m
ing parts of the EDF’s. In our model, the density deviati
dr has been reduced effectively. Most of the compress
effect in the previous LB models has been eliminated. Mo
over, we find that the numerical results can be further i
proved if a more complex feedback function is chosen@16#.
The present model will be applied to study the pulsatile fl
in the blood vessel@15#. We believe that the method can b
extended totarget the density, which may be related to th
temperature, pressure, etc., in other LB models@17,18#.
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